Core-to-Rydberg band shift and broadening of hydrogen bonded ammonia clusters studied with nitrogen K-edge excitation spectroscopy.
نویسندگان
چکیده
Nitrogen 1s (N 1s) core-to-Rydberg excitation spectra of hydrogen-bonded clusters of ammonia (AM) have been studied in the small cluster regime of beam conditions with time-of-flight (TOF) fragment-mass spectroscopy. By monitoring partial-ion-yield spectra of cluster-origin products, "cluster" specific excitation spectra could be recorded. Comparison of the "cluster" band with "monomer" band revealed that the first resonance bands of clusters corresponding to N 1s → 3sa(1)/3pe of AM monomer are considerably broadened. The changes of the experimental core-to-Rydberg transitions ΔFWHM (N 1s → 3sa(1)/3pe) = ~0.20/~0.50 eV compare well with the x ray absorption spectra of the clusters generated by using density functional theory (DFT) calculation. The broadening of the core-to-Rydberg bands in small clusters is interpreted as being primarily due to the splitting of non-equivalent core-hole N 1s states caused by both electrostatic core-hole and hydrogen-bonding (H(3)N···H-NH(2)) interactions upon dimerization. Under Cs dimer configuration, core-electron binding energy of H-N (H-donor) is significantly decreased by the intermolecular core-hole interaction and causes notable redshifts of core-excitation energies, whereas that of lone-pair nitrogen (H-acceptor) is slightly increased and results in appreciable blueshifts in the core-excitation bands. The result of the hydrogen-bonding interaction strongly appears in the n-σ* orbital correlation, destabilizing H-N donor Rydberg states in the direction opposite to the core-hole interaction, when excited N atom with H-N donor configuration strongly possesses the Rydberg component of anti-bonding σ* (N-H) character. Contributions of other cyclic H-bonded clusters (AM)(n) with n ≥ 3 to the spectral changes of the N 1s → 3sa(1)/3pe bands are also examined.
منابع مشابه
Inner-shell excitation spectroscopy and fragmentation of small hydrogen-bonded clusters of formic acid after core excitations at the oxygen K edge.
Inner-shell excitation spectra and fragmentation of small clusters of formic acid have been studied in the oxygen K-edge region by time-of-flight fragment mass spectroscopy. In addition to several fragment cations smaller than the parent molecule, we have identified the production of HCOOH.H+ and H3O+ cations characteristic of proton transfer reactions within the clusters. Cluster-specific exci...
متن کاملHydrogen bonding in methanol clusters probed by inner-shell photoabsorption spectroscopy in the carbon and oxygen K-edge regions.
Hydrogen bonding in methanol clusters has been investigated by using inner-shell photoabsorption spectroscopy and density functional theory (DFT) calculations in the carbon and oxygen K-edge regions. The partial-ion-yield (PIY) curves of H(CH(3)OH)(n)(+) were measured as the soft x-ray absorption spectra of methanol clusters. The first resonance peak in the PIY curves, which is assigned to the ...
متن کاملUltrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy.
We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecula...
متن کاملImaging the state-specific vibrational predissociation of the ammonia-water hydrogen-bonded dimer.
The state-to-state vibrational predissociation (VP) dynamics of the hydrogen-bonded ammonia-water dimer were studied following excitation of the bound OH stretch. Velocity-map imaging (VMI) and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Following vibrational excitation of the bound OH stretch fundamental, ammonia fragme...
متن کاملMass analyzed threshold ionization detected infrared spectroscopy: isomerization activity of the phenol-Ar cluster near the ionization threshold.
The structure of the phenol-argon cluster (PhOH-Ar) in high-n Rydberg states is investigated by the newly developed technique of mass analyzed threshold ionization detected infrared (MATI-IR) spectroscopy. This method selectively measures IR spectra of molecular clusters in very high-n Rydberg states (n > 100) utilized in zero kinetic energy (ZEKE) photoelectron and MATI spectroscopy, whose ion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 136 1 شماره
صفحات -
تاریخ انتشار 2012